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Abstract
We consider the problem of finding a minimum common string partition (MCSP) of two

strings, which is an NP-hard problem. The MCSP problem is closely related to genome

comparison and rearrangement, an important field in Computational Biology. In this paper,

we map the MCSP problem into a graph applying a prior technique and using this graph, we

develop an Integer Linear Programming (ILP) formulation for the problem. We implement

the ILP formulation and compare the results with the state-of-the-art algorithms from the lit-

erature. The experimental results are found to be promising.

1 Introduction
In the minimum common string partition (MCSP) problem, we are given two related strings
(S, T). Two strings are said to be related if the frequencies of each letter in the two strings
match. A partition of a string S is defined as a sequence P = (b1, b2, . . ., bc), where bi are sub-
strings of S whose concatenation is equal to S, i.e., b1 b2. . .bc = S. Given a partition P of a string
S and a partition Q of a string T, we say that the pair π =< P, Q> is a common partition of (S,
T) if Q is a permutation of P. The minimum common string partition problem is to find a com-
mon partition of (S, T) with the minimum number of substrings, that is to minimize c. For
example, if (S, T) = (atatgat,atgatat), then an optimal solution is π = {atgat,at} and the mini-
mum common partition size is 2. The restricted version of MCSP where each letter occurs at
most d times in each input string, is denoted by d-MCSP. A more detailed study of the applica-
tion of MCSP can be found in [1], [2] and [3].

In this paper, we present an Integer Linear Programming (ILP) formulation for the MCSP
problem. In particular, we use a graph mapping that was presented in our prior work [4] to solve
the MCSP problem using the Ant Colony Optimization technique [5]. Here we exploit this graph
to devise an ILP formulation for the problem. Then we implement the ILP formulation, conduct
extensive experiments and compare the results with the state-of-the-art algorithms from the liter-
ature. As will be reported in a later section, the results clearly indicate that the ILP formulation is
effective and provides excellent results. One of the intriguing findings of our work is the fact that
our ILP formulation turns out to be more effective and accurate than our meta-heuristics
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approach presented in [4]. This is especially interesting because both the algorithms are based on
the same graph that is constructed through an interesting mapping [4].

The rest of the paper is organized as follows. In Section 2 we present a brief literature review.
Section 3 presents the notations and definitions used in this paper. In Section 4 we present the
ILP formulation for the MCSP problem. We present our experimental results in Sections 5 fol-
lowed by a brief relevant discussion in Section 6. Finally, we briefly conclude in Section 7.

2 RelatedWorks
The 1-MCSP problem is essentially the breakpoint distance problem [6] between two permuta-
tions, which is solvable in polynomial time [1]. The 2-MCSP problem has been shown to be
NP-hard and moreover APX-hard in [1]. The authors in [1] also have presented several
approximation algorithms to solve the problem. In [2], Chen et al. have studied a generaliza-
tion of the MCSP problem called the Signed Reversal Distance with Duplicates (SRDD). Fur-
thermore, they have presented a 1.5-approximation algorithm for the 2-MCSP problem. In [7],
Damaschke has analyzed the fixed-parameter tractability of the MCSP problem considering
different parameters. The MCSP problem is also studied in [8], where it is termed as the true
evolutionary distance problem between two genomes. In [9], the authors have investigated the
d-MCSP problem along with two other variants, namely,MCSPc, where the alphabet size is at
most c and x-balanced MCSP, which requires that the length of blocks be at most x away from
the average length. They have shown thatMCSPc is NP-hard when c� 2. As for d-MCSP, they
have presented an fixed parameter tractable (FPT) algorithm which runs in O�((d!)k) time,
where k is the number of blocks in the optimal common partition. The result has been
improved by Bulteau et al. [10] by showing that MCSP can be solved in O(d2k � kn) time.
Recently, Bulteau and Komusiewicz [11] have introduced the first fixed-parameter algorithm
for the MCSP problem using parameter k only.

Chrobak et al. [3] have analyzed a natural greedy heuristic for the MCSP problem: itera-
tively, at each step, it extracts a longest common substring from the input strings. They have
shown that for the 2-MCSP problem, the approximation ratio (for the greedy heuristic) is
exactly 3. They also have proved that for the 4-MCSP problem the ratio is log n and for the gen-
eral case, it lies between O(n0.43) and O(n0.67). In [12], He has proposed an improved greedy
algorithm based on the greedy strategy of [3], where the idea is to extract the longest common
substring containing a symbol occurring only once at each step whenever there is such a
symbol.

In our prior work [4], we have developed a meta-heuristc algorithm, namely, MAX-MIN
ant system to solve the MCSP problem. In particular, in [4], we have mapped the instance of
the MCSP problem into a graph, namely, the common substring graph. MAX-MIN Ant System
has been implemented over this graph. Recently in [13], Blum et al. have proposed an iterative
probabilistic tree search algorithm for solving this problem. The algorithm is an iterative prob-
abilistic variant of the greedy algorithm of [3]. The authors have tested their approach with the
dataset introduced in [4]. Subsequently, a common block based ILP formulation has been pro-
posed in [14] by Blum et al. They have tested their ILP formulation on the previous bench-
marks [4] as well as on a new benchmark of 7 larger instances.

3 Preliminaries
This section summarizes the definitions and notations used throughout the paper. Two strings
(S, T), of equal length (n), over an alphabet ∑ are called related if the frequencies of the letters
in the two strings match. We define a block B = [S, i, j], 0� i� j< n, of a string S as a data
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structure where i and j denote the starting and ending positions of the block. A block, [S, i, j]
represents a substring of S denoted as substring([S, i, j]) with length (j − i+1).

As an example, if we have two strings (S, T) = (atgcat,tgcata), then [S, 0, 1] and [S, 4, 5]
both represent the substring at of S. In other words, substring([S, 0, 1]) = substring([S, 4, 5]) =
at. We say that a block Bmatches with another block B0 if the two blocks represent the same
substrings. Given a list of blocks lb,matchList(lb, B) is defined as a list of those blocks of lb that
match B. For the example stated above, let a list of blocks be lb = {[S, 0, 1], [S, 1, 1], [S, 4, 5]}
and B = [S, 0, 1]; thenmatchList(lb, B) = {[S, 0, 1], [S, 4, 5]}.

We use the notion of a common substring graph as introduced in [4]. A common substring
graph, Gcs(V, E, S) of two strings (S, T) is defined as follows. Here V is the vertex set of the
graph and E is the edge set. Vertices are the positions of string S, i.e., for each v 2 V, v 2 {0, n
− 1}. Two vertices vi � vj are connected with an edge, i.e, (vi, vj) 2 E, if the substring induced by
the block [S, vi, vj] matches some substring of T. More formally, if ST denotes the set of all sub-
strings of T, we have:

ðvi; vjÞ 2 E , 9s 2 ST : substringð½S; vi; vj�Þ ¼ s

In other words, each edge in the edge set corresponds to a block satisfying the above condi-
tion. For convenience, we will denote the edges as edge blocks and use the list of edge blocks
(instead of edges) to define the edge set E.

For example, suppose (S, T) = (atgcta,atgcat). The corresponding common substring graph
of the first string S, denoted by Gcs(V, E, S), will have vertex set, V = {0, 1, 2, 3, 4, 5} and edge
set, E = {[S, 0, 0], [S, 1, 1], [S, 2, 2], [S, 3, 3], [S, 4, 4], [S, 5, 5], [S, 0, 1], [S, 1, 2], [S, 2, 3], [S, 0, 2],
[S, 1, 3], [S, 0, 3]}.

4 ILP Formulation
Suppose we are given two related strings (S, T), each of length n. We create two graphs, namely,
Gcs(V1, E1, S) and Gcs(V2, E2, T) of (S, T), where V1 and V2 are the vertex sets and E1 and E2 are
the edge block sets of the two graphs respectively. We define two sets of binary variables,
namely, xt1 and yt2 where t1 2 E1 and t2 2 E2. We also write δk(v)

− and δk(v)
+ for the sets of

incoming and outgoing edge blocks from Ek where v 2 Vk and k 2 {1, 2}. An incoming (outgo-
ing) edge block is the one whose starting (ending) position i (j) is 0 (n − 1). With the above set-
ting, we develop an ILP formulation (denoted as ILPgraph) for the MCSP problem using the
common substring graph as follows:

minimize
X

t12E1
xt1 ð1Þ

subject to
X

t12E1
xt1 ¼

X

t22E2
yt2 ð2Þ

X

t12d1ð0Þþ
xt1 ¼ 1 ð3Þ

X

t12d1ðvÞ�
xt1 ¼

X

t12d1ðvþ1Þþ
xt1 8v 2 ½0; n� 1� ð4Þ
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X

t22d2ð0Þþ
yt2 ¼ 1 ð5Þ

X

t22d2ðvÞ�
yt2 ¼

X

t22d2ðvþ1Þþ
yt2 8v 2 ½0; n� 1� ð6Þ

X

b12matchListðE1 ;t1Þ
xb1 ¼

X

b22matchListðE2 ;t1Þ
yb2 8t1 2 E1 ð7Þ

xt1 2 f0; 1g; yt2 2 f0; 1g ð8Þ

4.1 Explanation of the Formulation
Objective function. Eq 1 is the objective function that is to be minimized. The function

simply calculates the size of the partition.
Equality constraint. Eq 2 states that two partitions on the two substring graphs must be of

equal size. In other words, the number of blocks in the factorization of the first string Smust be
equal to the number of blocks in the factorization of the second string T.

Factorization constraint. Eqs 3 and 4 together ensures that a unit flow enters at the source
(the vertex labelled with 0) and arrives at the sink (the vertex labelled with n − 1) for string S.
So, the string is factorized. For string T the factorization is achieved in a similar fashion by Eqs
5 and 6. These constraints ensure that the strings get factorized by non-overlapping blocks.

One to one match constraint. We have two sets of blocks after the factorization. We must
ensure that there is a one to one matching between the two sets of blocks. By matching we
mean that, for each selected block (with xt = 1 where t 2 E1) of the first edge block set E1, there
must be one and only one corresponding selected block (with yt = 1 where t 2 E2) with the
same substring in the second edge block set E2 and vice versa. Eq 7 achieves the one to one
matching by ensuring that for each edge block, the number of selected blocks in E1 equals the
number of selected blocks in E2.

Integrality constraint. Eq 8 ensures the integrality of the variables.
This is a polynomial formulation. The number of variables as well as the number of con-

straints of the formulation depends on the size of the edge block sets, E1 and E2. In the worst
case, the number of variables and constraints can be O(n2), where n is the size of the vertex set.
But in practice the number of variables is much less than that which is evident from the experi-
mental results as reported in the following section.

5 Experiments
Except for one, we have conducted all our experiments in a computer with Intel(R) Core(TM)
i5-2450M CPU @2.50 GHz having an installed memory (RAM) of 4.00 GB. There is one par-
ticular experiment that has been run in another machine with the same configuration except
that the available RAM was higher, 8.00 GB. The operating system was Windows 8.1. The pro-
gramming environment was Matlab. We have used SCIP (version 3.1.0) standalone solver [15]
to solve ILPgraph.
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5.1 Data sets
We have conducted our experiments on 5 sets of random synthetic data (henceforth labelled as
Group1-Group5) and a real gene sequence dataset (henceforth labelled as Real). The datases
are briefly described below.

Group1-Group3. In our previous work [4], we generated uniform random DNA
sequences, each of length at most 600, using “FaBox (1.41)” [16]. A pair of DNA sequences (S,
T) was generated by randomly shuffling [16] one DNA sequence from the set using “Sequence
Manipulation Suite” [17]. This dataset is divided into 3 groups. The first 10 (Group1) have
lengths less than or equal to 200 bps (base-pairs), the next 10 (Group2) have lengths within
[201, 400] and the rest 10 (Group3) have lengths within [401, 600] bps. Notably, these datases
are also used for experimentation and analysis by researchers in recent papers [13, 14].

Group4. We have also tested our formulation with a new random dataset collected
through personal communication with Christian Blum, one of the co-authors of [14]. This new
dataset is a collection of 300 uniform random instances of different lengths and alphabet sizes.
The sequences in the dataset are of lengths {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}
and of alphabet size {4, 12, 20}. In particular, for each length there are 30 sequences among
which the first 10 are of alphabet size 4, the next 10 are of alphabet size 12 and the rest are of
alphabet size 20.

Group5. This dataset was introduced in [14] to test the solving limit of their ILP formula-
tion. This constitutes 7 instances of length {800, 1000, 1200, 1400, 1600, 1800, 2000}.

Real. We have used the real gene sequence data used in [4]. This data correspond to the
first 15 gene sequences of Bacterial Sequencing (part 14) whose lengths are within [200, 600].

5.2 Implementation
SCIP [15] (version 3.1.0) standalone solver is used to solve the ILP formulation. SCIP runs on
single thread [18]. The solution of an instance is a two steps procedure. Firstly for each instance
we have to generate the variables and constraints in a format that is understandable to SCIP.
Using Matlab we have generated the MPS (Mathematical Programming System) files of the
instances. These files are the input to the solver. For the solver, we have enforced a time limit of
3600 cpu seconds for Group1-Group3, Group4 and Real. The First 5 out of the 7 instances of
Group5 have been allowed 3600 seconds each whereas the other 2 have been given 7200 sec-
onds each. All other parameters have been left default.

5.3 Results and Analysis
In an updated and extended version [19] (the preprint is available at [20]) of our earlier work
[4], MAX-MIN ACO (referred to as MMAS henceforth) has been compared with the greedy
algorithm of [3]. In [13], the authors have compared their two versions of iterative probabilistic
tree search (TS1 and TS2) with Greedy and MMAS. Here we report only the best of the two
tree search solutions (henceforth referred to as TS). Recently in [14], the authors have com-
pared the results of their ILP formulation (ILPorig) with Greedy, MMAS and TS. Here, we
compare our ILP formulation, i.e., ILPgraph with MMAS [4, 19, 20], TS [13] and
ILPorig[14]. As for the greedy algorithm, we have considered the improved greedy approach
in [12] (henceforth labelled as Greedy).

Table 1 presents the comparison among the results of ILPgraph and other competitive
approaches for Group1-Group3 and Real dataset. For each group the first column is the
instance number. The second, third and forth columns represent the common partition size by
Greedy [12], MMAS [19] and TS [13] respectively. The fifth to eighth column summarize the
results of ILPorig. The result is obtained from [14]. The fifth column is the partition size. The
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sixth column is the time in second, presented as X/Y format only when the solver has been
unable to find the optimal solution in 3600 cpu seconds; otherwise it is shown as a single value
format reporting the time to get the optimal solution. The seventh column report the relative
gap, where gap is defined as the difference between the value of the best valid solution (primal
bound) and the lower bound (dual bound) of the problem. The relative gap is formulated as
j(upperbound − lowerbound)/min(jupperboundj, jlowerboundj)j. The eighth column is the
number of variables in the formulation for the instance. The last four columns report the result
of our formulation, ILPgraph. The columns here reports the same information as the fifth to
eighth columns. The best result for an instance is boldfaced.

From Table 1, it is easily verified that ILPgraph provides much better common partition
size than other approaches. Out of 45 instances, it provides equal or better partition size than
ILPorig in 42 cases, amongst which 23 are strictly better. The improvement is not only in the
solution size but also in computational time. Except for Group1, ILPgraph has been able to
achieve improved solution in significantly less time than ILPorig. The number of variables are
also dramatically reduced in ILPgraph. Fig 1, shows the percentage of improvement of ILP-

graph over the other five approaches considered. The significant improvement can be perceived
from the figure.

Table 2 reports the average results of Group4 dataset. Here the average of the results of 10
instances for each length group having a particular alphabet size is reported. For example, the
first row reports the average results of ten 100-length instances on an alphabet size of 4. The
result of ILPorig is collected through personal communication with the author of [14]. It is
notable that for the Group4 dataset, ILPorig was implemented using GCC 4.7.3 and IBM
ILOG CPLEX V12.1. Moreover, as reported in [14], the corresponding experiments were con-
ducted on a cluster of PCs with 2933MHz Intel(R) Xeon(R) 5670 CPUs having 12 nuclei and
32GB RAM. The third to seventh columns report the solution of ILPorig while the eighth to
thirteenth columns report the solution of ILPgraph. The columns report the same information
as in Table 1 with four exceptions as follows. Firstly, the time when the first valid solution is
achieved and the time when the best solution is achieved within the time limit (3600 sec) are
presented in two different columns (labelled as ftime and time respectively). Secondly, for each
formulation, how many among the 10 instances (represented by each row) have been solved
optimally is reported in the column named #opt. Finally, the last two columns represent the
percentage of improvement in average partition size and the percentage of decrease in the
number of variables of ILPgraph over ILPorig respectively.

Like Group1-Group3 and Real dataset, the results of Table 2 draw the same conclusion. The
ILPgraph formulation provides better solutions than ILPorig in almost every aspect. Numeri-
cally, ILPgraph gets equal or better average partition in 28 out of 30 instances of which 12 are
strictly better. The number of instances solved optimally by ILPgraph is 172 (out of 300)
which is 12 more than that of ILPorig. The percentage of improvements in the average solu-
tions also proves the superiority of ILPgraph. As it is evident from Table 2, the improvement
gets more acute with the increase of the string length and the decrease of the alphabet size. This
observation is also supported by Table 3 that reports the solutions of the two formulations for
Group5 dataset. The 7 instances of Group5 were introduced in [14] to test the limit of their for-
mulation. Their simulation [14] was conducted in a cluster of PCs with “Intel(R) Xeon(R) CPU
513” CPUs of 4 nuclei of 2000 MHz and 4 Gigabyte of RAM with the time limit of 12 hours.
On the other hand, for this dataset, we have enforced 3600 seconds for the first 5 instances and
7200 seconds for the last two. ILPorig could not achieve a valid solution for the last instance
even within 12 hours whereas ILPgraph got a valid solution in 6100 seconds. From the per-
centage of improvement (%impr) it can be concluded that, ILPgraph achieves better partition
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Table 1. Comparison for Group1-Group3 and Real dataset.

ILPorig ILPgraph

Instance no. Greedy MMAS(Avg.) TS(Avg.) value time(sec.) gap (%) #vars value time(sec.) gap(%) #vars

Group1 1 46 42.87 42.30 41 1 0 4299 41 6.01 0 781

2 56 51.87 48.90 47 3 0 6211 47 16.00 0 928

3 62 57.00 56.00 52 30 0 8439 52 24.06 0 1172

4 46 43.33 43.00 41 2 0 4299 41 12.69 0 736

5 44 42.93 41.00 40 1 0 4718 40 5.42 0 833

6 48 42.80 41.10 40 3 0 4435 40 14.87 0 765

7 65 60.60 60.80 55 38 0 8687 55 81.75 0 1159

8 51 46.93 45.30 43 3 0 4995 43 14.42 0 816

9 46 45.53 43.00 42 2 0 4995 42 14.31 0 767

10 63 59.73 58.80 54 50 0 9699 54 149.84 0 1254

Avg. 52.7 49.36 48.02 45.5 13.3 0 6077.7 45.5 33.937 0 921.1

Group2 1 119 113.93 112.1 98 66/1969 2.9 37743 99 11.05/511.74 3.78 2740

2 122 118.93 115.6 106 129/1032 7.5 47174 104 14.55/1709.76 5.40 3191

3 114 112.53 107.6 97 55/1216 2.7 36979 97 12.35/1382.78 2.63 2776

4 116 116.40 112.4 102 63/949 4.9 40960 101 12.42/487.63 3.42 2914

5 135 132.20 128.7 116 146/3299 6.7 52697 115 16.91/1422.04 5.85 3291

6 108 106.07 103.2 93 56/1419 5.6 35650 94 16.30/3209.79 6.29 2694

7 108 98.40 96.7 88 41/2776 6.0 30839 88 8.19/936.17 6.09 2494

8 123 118.40 115.1 104 101/2980 5.1 42668 104 11.18/427.08 5.06 2954

9 124 119.47 114.5 104 81/1630 5.2 42998 103 10.56/2962.39 4.19 2924

10 105 101.87 98.6 89 32/1458 3.6 31169 88 8.18/2232.43 1.99 2423

Avg. 117.4 113.82 110.45 99.7 77/1873 5.02 39887.7 99.3 12.17/1528.18 4.47 2840.1

Group3 1 182 179.93 172.9 155 733/1398 7.50 110973 155 56.98/257.47 8.10 5230

2 175 176.20 170.7 155 553/869 7.70 102670 152 36.98/1202.47 5.56 4849

3 196 187.87 186.3 166 746/2183 8.50 119287 161 55.67/564.16 5.69 5339

4 192 184.27 180.5 159 731/1200 6.90 114975 159 332.4/2218.22 7.38 5251

5 176 171.53 164.7 150 485/886 9.70 99775 148 45.35/1089.34 9.17 4917

6 170 163.47 164.4 147 399/764 9.10 88839 146 31.7/468.41 7.99 4441

7 173 168.47 162.4 149 524/990 9.80 95765 148 34.92/2389.80 7.55 4734

8 185 176.33 171.9 151 492/3584 6.70 97400 150 35.48/2654.92 6.10 4691

9 174 172.80 170.4 158 571/1186 10.90 104186 154 40.46/1459.22 9.25 5009

10 171 167.20 162.3 148 547/1446 9.10 98237 146 47.38/1387.57 8.37 4823

Avg. 179.4 174.81 170.65 153.8 578/1451 8.59 103210.7 151.9 71.73/1369.16 7.52 4928.40

Real 1 95.00 87.67 87.30 78 972 0.00 22799 78 2.26/653.99 0.00 1966

2 161.00 156.33 154.50 139 432/752 9.20 80523 136 37.45/1563.62 7.10 4330

3 121.00 117.07 113.80 104 125/3580 5.60 45869 103 14.61/1888.26 4.58 3052

4 173.00 164.87 160.30 144 577/1730 6.50 91663 142 41.06/1811.39 5.16 4467

5 172.00 171.07 167.60 150 778/2509 7.90 108866 149 83.75/1321.63 7.89 5068

6 153.00 146.00 144.10 128 257/3578 6.50 70655 127 52.03/2108.05 6.07 3836

7 140.00 141.00 132.50 121 359/2187 6.90 73502 120 30.91/589.77 6.23 4187

8 134.00 133.13 128.70 116 275/3365 6.80 65560 117 21.23/1114.30 7.91 3879

9 149.00 147.53 142.60 131 399/613 8.80 75833 128 22.38/676.10 6.56 4130

10 151.00 150.53 145.30 131 311/1771 7.20 69560 128 19.59/1897.79 4.55 3876

11 126.00 125.00 121.60 110 205/3711 4.80 56160 110 16.00/3314.21 4.98 3546

12 143.00 139.13 139.00 126 299/793 9.80 70861 123 22.30/474.68 7.83 3981

13 180.00 181.53 173.20 156 784/1130 7.10 115810 155 77.87/883.82 6.58 5251

14 152.00 149.33 147.30 134 370/2456 9.70 73449 131 34.52/429.76 7.84 3905

15 157.00 161.60 153.10 139 560/1762 7.70 91060 139 42.15/2137.48 8.18 4556

Avg. 147.13 144.79 140.73 127.13 409/2131 6.97 74144.67 125.73 34.54/1390.99 6.10 4002

doi:10.1371/journal.pone.0130266.t001
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size with less time as the length of the string increases. The number of variables also become
intractable for ILPorig as the length increases. All of these results speak in favor of ILPgraph.

Finally, to further test the limit of our formulation, i.e., ILPgraph, we have conducted an
experiment with an instance of length 3000 on the machine with 8GB of RAM. The time limit
was set to 12 hours. ILPgraph has been able to get a valid solution of partition size 642 in 11
hours.

5.4 Running Time
In the previous section, we have shown that ILPgraph provides much better partition size. In
this section we will explore the running time of ILPgraph. It is clear from Tables 1–3 that
ILPgraph achieves faster solution in most of the cases even running on a slower processor

Fig 1. Percentage of improvement of ILPgraph over Greedy, MMAS, TS and ILPorig. Top: Improvement in average solution. Bottom: Improvement in
median solutions.

doi:10.1371/journal.pone.0130266.g001
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Table 2. Comparison of average results on Group4 dataset.

ILPorig ILPgraph

length alphabet
Size

value ftime time #opt gap #vars value ftime time #opt gap #vars %impr
(sol)

%impr
(var)

100 4 37.3 0 0 10 0.00 3425.6 37.3 0.17 5.04 10 0.00 649.7 0.00 81.03

12 68.5 0 0 10 0.00 993.3 68.5 0.04 0.05 10 0.00 324.0 0.00 67.38

20 79.8 0 0 10 0.00 622.4 79.8 0.02 0.02 10 0.00 264.2 0.00 57.55

200 4 63.5 3 101 10 0.00 13498.5 63.5 2.67 210.75 10 0.00 1473.8 0.00 89.08

12 119.2 0 0 10 0.00 3824.6 119.2 0.23 0.59 10 0.00 762.8 0.00 80.06

20 146.2 0 0 10 0.00 2301.1 146.2 0.08 0.08 10 0.00 591.6 0.00 74.29

300 4 88.5 21 2358 1 3.20 30398.5 88.6 58.76 1455.52 1 3.23 2412.5 -0.11 92.06

12 165.3 1 3 10 0.00 8478.6 165.3 1.04 17.49 10 0.00 1249.1 0.00 85.27

20 206.7 0 0 10 0.00 5029.6 206.7 0.19 0.23 10 0.00 967.0 0.00 80.77

400 4 115.5 89 2159 0 6.70 53658.5 114.3 28.67 1709.47 0 5.65 3369.8 1.04 93.72

12 208.9 3 47 10 0.00 14887.2 208.9 3.61 73.09 10 0.00 1742.1 0.00 88.30

20 261.5 1 1 10 0.00 8932.0 261.5 0.60 0.73 10 0.00 1366.8 0.00 84.70

500 4 139.3 192 870 0 9.10 84004.2 135.8 43.85 1306.94 0 6.84 4411.8 2.51 94.75

12 249.0 10 328 10 0.00 23173.1 249.0 6.04 500.94 10 0.00 2266.2 0.00 90.22

20 312.2 4 4 10 0.00 13761.0 312.2 1.35 4.08 10 0.00 1803.3 0.00 86.90

600 4 162.2 487 1893 0 9.40 120795.1 159.0 131.19 2018.26 0 7.94 5451.3 1.97 95.49

12 291.0 32 1202 2 0.90 33372.6 290.9 19.28 1703.27 4 0.48 2780.3 0.03 91.67

20 362.3 6 12 10 0.00 19543.8 362.3 3.34 14.61 10 0.00 2253.2 0.00 88.47

700 4 187.7 785 2856 0 10.00 164116.2 182.6 179.51 1475.00 0 7.93 6459.3 2.72 96.06

12 331.0 54 1811 0 1.20 45303.9 330.9 11.83 2404.24 0 0.99 3312.0 0.03 92.69

20 408.9 12 120 10 0.00 26588.5 408.9 5.03 70.57 10 0.00 2729.3 0.00 89.74

800 4 221.6 1442 3432 0 14.70 213956.1 207.7 349.98 1674.61 0 10.40 7555.9 6.27 96.47

12 368.7 123 2460 0 1.60 59026.8 369.5 17.87 1936.50 0 1.71 3871.0 -0.22 93.44

20 456.1 33 669 10 0.00 34451.6 456.1 12.09 489.33 10 0.00 3180.1 0.00 90.77

900 4 266.3 1880 2314 0 22.30 271158.3 227.7 491.91 2315.87 0 10.12 8682.5 14.49 96.80

12 408.5 178 2406 0 2.20 74372.5 407.9 26.34 1936.12 0 1.96 4440.8 0.15 94.03

20 501.5 50 1625 6 0.20 43543.4 501.5 11.44 1311.72 7 0.15 3649.8 0.00 91.62

1000 4 288.7 3253 3739 0 21.80 334125.1 249.2 540.01 1752.42 0 10.49 9825.4 13.68 97.06

12 449.2 306 3147 0 2.90 91955.2 445.4 21.53 1784.16 0 1.89 5017.2 0.85 94.54

20 546.9 89 2182 1 0.50 53736.0 546.7 9.99 1224.10 5 0.29 4106.7 0.04 92.36

doi:10.1371/journal.pone.0130266.t002

Table 3. Comparison result for Group5 dataset. NSFmeans “No solutions found”.

ILPorig ILPgraph

length value time #vars gap value time #vars gap %impr(sol) %impr(var)

800 210 3228 214622 10.70 204 2701 7546 8.70 2.86 96.48

1000 304 2922 334411 26.40 245 2964 9909 9.43 19.41 97.04

1200 342 6220 480908 22.60 306 850 11947 15.58 10.53 97.52

1400 401 12124 653401 24.90 343 3433 14316 13.95 14.46 97.81

1600 442 20616 854500 24.10 381 3600 16677 13.65 13.80 98.05

1800 486 37304 1084533 24.00 420 4723 19275 13.65 13.58 98.22

2000 NSF NSF 1335893 NSF 314 6100 21494 13.95 NA NA

doi:10.1371/journal.pone.0130266.t003
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having lesser memory. This is also true for the first valid solution it provides. Fig 2 shows the
comparison of the average first valid solution time for three groups based on the alphabet size
in Group4 dataset. From this figure it is clear that ILPgraph finds the first valid solution faster
than ILPorig and the difference in the running time becomes more apparent as the length of
the string increases. Now we concentrate on comparing the running time of ILPgraph with the
other four approaches. The running times of the two tree search algorithms (referred to as TS1
and TS2) are taken from [15]. The running time of MMAS is taken from [19]. The Greedy
algorithm is very fast. It gives the output within few seconds. So, in the analysis, we will assume
that the output of Greedy algorithm is readily available even at the beginning of the simulation.
We have recorded the primal solution (partition size) of our algorithm periodically. Figs 3–6
show the detailed runtime comparison among the algorithms for Group1, Group2, Group3

Fig 2. Average time for the first valid solution found by ILPgraph on Group4 data. Top: Alphabet size 4. Middle: Alphabet size 12. Bottom: Alphabet size
20.

doi:10.1371/journal.pone.0130266.g002

An ILP Formulation of the MCSP Problem

PLOSONE | DOI:10.1371/journal.pone.0130266 July 2, 2015 10 / 16



Fig 3. Avg. solution Vs. time comparison (Group1).

doi:10.1371/journal.pone.0130266.g003

Fig 4. Avg. solution Vs. time comparison (Group2).

doi:10.1371/journal.pone.0130266.g004
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Fig 6. Avg. solution Vs. time comparison (Real).

doi:10.1371/journal.pone.0130266.g006

Fig 5. Avg. solution Vs. time comparison (Group3).

doi:10.1371/journal.pone.0130266.g005
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and Real datasets respectively. For each group we have shown the average partition size
dynamics with respect to time. The three points (“�”,“+”,“o”) in each of the figures are the plots
of average partition size vs. the average time needed to achieve that partition size for MMAS,
TS1 and TS2 approach respectively (data taken from [13], [19]). The dashed line represents the
Greedy partition size.

Although the reported time of ILPgraph (in Table 1) is higher than that of Greedy, TS1 and
TS2 approaches in some instances but from the Figs 3–6, it can be easily observed that the
ILPgraph algorithm reaches to better solutions much earlier. From the figures it is clear that
ILPgraph is better than Greedy at any stage of time. Even if we stop the algorithm at or earlier
than the average runtime of MMAS, TS1 or TS2, the ILPgraph provides better solutions.

6 Discussion
At this point a brief discussion on the number of variables in the two ILP formulations, namely,
ILPorig and ILPgraph, is in order. In Fig 7, we show the comparison of the number of vari-
ables between the two formulations for Group4 dataset. Although both formulations have O
(n2) variables, we observe a significant decrease in the number of variables in ILPgraph than
ILPorig. The average improvement in the number of variables are reported in the last column
of Tables 2 and 3 for Group4 and Group5 datasets respectively. For the Group4 dataset the
maximum and minimum percentage of decrease in the number of variables are 97.06% and
57.55% with the average improvement of 88.24% while for the Group5 dataset the maximum
and minimum are 98.22% and 96.48% with an average of 97.52%.

The drastic improvement in the number of variables for ILPgraph and the lack thereof for
ILPorig can easily be understood by analyzing the variable set of the two formulations.
ILPorig is based on common blocks. A common block b of two strings (S, T) is defined in [14]
as a triple (t, k1, k2). Here t is a common substring of (S, T) that appeared at position k1 of S
and k2 of T where 0� k1, k2 � n − 1. B = {B1, B2,. . .Bm} is the (ordered) set of all common
blocks of (S, T). This set is the variable set of ILPorig. For an example, if (S, T) = (aaagggccc,
gggaaaccc), then the number of common blocks would be 42. To find this, first concentrate on
a common substring from S and T, namely aaa. The common blocks resulting from this com-
mon substring are, B = {[a, 0, 3], [a, 0, 4], [a, 0, 5], [a, 1, 3], [a, 1, 4], [a, 1, 5], [a, 2, 3], [a, 2, 4],
[a, 2, 5], [aa, 0, 3], [aa, 0, 4], [aa, 1, 3], [aa, 1, 4], [aaa, 0, 3]}. Similar common blocks can be
computed for the other two common substrings (ggg and ccc) too. On the other hand the
number of variables in ILPgraph depends on the number of edges in the common substring
graph. Thus, for the above example, if we construct the common substring graph on S, we have
18 edge blocks, E = {[S, 0, 0], [S, 0, 1], [S, 0, 2], [S, 1, 1], [S, 1, 2], [S, 2, 2], [S, 3, 3], [S, 3, 4], [S, 3,
5], [S, 4, 4], [S, 4, 5], [S, 5, 5], [S, 6, 6], [S, 6, 7], [S, 6, 8], [S, 7, 7], [S, 7, 8], [S, 8, 8]}. Thus ILP-

graph reduces the number of variables significantly.

7 Conclusion and Future works
In this paper, we have presented an ILP formulation for the MCSP problem. We have con-
ducted extensive experiments and compared the results with the state-of-the-art algorithms in
the literature. The results clearly indicate that the ILP formulation is effective and provides
excellent results. The observations of Section 5.4 bear important research directions. The
research on this field should now be focussed on finding MCSP for larger instances in reason-
able time. As ILPgraph provides better solution faster than the other competitive approaches,
one idea is to stop the solver as soon as it gets the first solution. This solution or possibly a set
thereof can be used as the initial solution(s) for existing and new meta-heuristic approaches
developed to solve this problem including the ones reported in [4] and [13]. Another research
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direction could be as follows. So, far MCSP has been studied mostly in the context of opera-
tions research. However, it has important applications in genome comparison and rearrange-
ment. So, datases from comparative genomics applications could be gathered for further
experimental analysis and comparison with relevant algorithms (e.g., [10]) in the field of
computational biology.

Supporting Information
S1 Dataset. Group1 dataset. The text file contains 10 instances in pair for Group1 dataset.
(TXT)

Fig 7. Comparison of average number of variables between ILPorig and ILPgraph for Group4 dataset. Top: Alphabet size 4. Middle: Alphabet size 12.
Bottom: Alphabet size 20.

doi:10.1371/journal.pone.0130266.g007
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S2 Dataset. Group2 dataset. The text file contains 10 instances in pair for Group2 dataset.
(TXT)

S3 Dataset. Group3 dataset. The text file contains 10 instances in pair for Group3 dataset.
(TXT)

S4 Dataset. Group4 dataset. The compressed folder contains 300 files each containing an
instance of lengths from 100 to 1000 separating by alphabet size.
(TGZ)

S5 Dataset. Group5 dataset. The compressed folder contains 7 files each consisting an
instance of lengths from 800 to 2000.
(TGZ)

S6 Dataset. Real dataset. The text file contains 10 instances in pair for Real dataset.
(TXT)

S7 Dataset. 3000 length instance. The text file contains an instance of length 3000.
(TXT)
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